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A package’s source code repository records the package’s development history, which is critical for the use and
risk monitoring of the package. However, a package release often misses its source code repository due to the
separation of the package’s development platform from its distribution platform. To establish the link, existing
tools retrieve the release’s repository information from its metadata, which suffers from two limitations: the
metadata may not contain or contain wrong information. Our analysis shows that existing tools can only
retrieve repository information for up to 70.5% of PyPI releases. To address the limitations, this paper proposes
PYRADAR, a novel framework that utilizes the metadata and source distribution to retrieve and validate the
repository information for PyPI releases. We start with an empirical study to compare four existing tools on
4,227,425 PyPI releases and analyze phantom files (files appearing in the release’s distribution but not in the
release’s repository) in 14,375 correct and 2,064 incorrect package-repository links. Based on the findings, we
design PYRADAR with three components, i.e., Metadata-based Retriever, Source Code Repository Validator, and
Source Code-based Retriever, that progressively retrieves correct source code repository information for PyPI
releases. In particular, the Metadata-based Retriever combines best practices of existing tools and successfully
retrieves repository information from the metadata for 72.1% of PyPI releases. The Source Code Repository
Validator applies common machine learning algorithms on six crafted features and achieves an AUC of up to
0.995. The Source Code-based Retriever queries World of Code with the SHA-1 hashes of all Python files in
the release’s source distribution and retrieves repository information for 90.2% of packages in our dataset with
an accuracy of 0.970. Both practitioners and researchers can employ the PYRADAR to better use PyPI packages.
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1 INTRODUCTION

In order to boost productivity and reduce cost, developers widely reuse “the wheels” [He et al. 2021;
Larios Vargas et al. 2020; Nguyen et al. 2020], i.e., reusing existing third-party packages rather
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than implementing the functionality from scratch. Many programming language (PL) communities
provide centralized package registries (such as PyPI for Python and NPM for JavaScript) to facilitate
the sharing and reuse of third-party packages, which host a substantially growing number of
packages. As of September 2023, over 480 thousand Python packages have been published in PyPL

Despite the benefits, reusing third-party packages also poses unique challenges to software
development. First, given so many packages available, selecting the right one is laborious for
developers [Larios Vargas et al. 2020]. Second, even if the right package is selected, how to estimate,
monitor, and mitigate risks of the package, e.g., stop-of-maintenance [Valiev et al. 2018] and
vulnerabilities [Alfadel et al. 2021; Decan et al. 2018; Liu et al. 2022; Pan et al. 2022; Pashchenko
et al. 2018; Zimmermann et al. 2019], is important yet challenging. Merely using source code in the
package’s distribution is often insufficient in mitigating the above challenges. Practitioners and
researchers commonly turn to the package’s source code repository. On the one hand, development
activity data recorded in the repository can help identify and mitigate some risks in the package. For
example, the number of stars is a critical factor when selecting third-party packages [Larios Vargas
et al. 2020]; the number of commits, contributors, and issues are popular indicators of the package’s
maintenance state [Valiev et al. 2018]; researchers also mine undisclosed vulnerabilities from
issues [Pan et al. 2022] and track patches for known vulnerabilities [Xu et al. 2022]. On the other
hand, the package’s source code repository provides package users a place that the package registry
lacks, allowing them to report bugs [Panichella et al. 2021], make contributions [Tsay et al. 2014;
Zhou and Mockus 2012; Zhu et al. 2016], and seek community help [Dabbish et al. 2012; Zhou and
Mockus 2015]. Therefore, a package’s source code repository not only complements the role of its
distribution in estimating and mitigating risks of the package but also plays a crucial role in its
usage. Locating the source code repository is vital for every package.

However, many major PL communities (Python, JavaScript, Java, etc.) follow the common prac-
tice of separating the code repository and distribution artifact of the package. The separation offers
numerous benefits, e.g. reducing the package’s installation size [Ladisa et al. 2023] and streamlining
the build process [Vu et al. 2021; Wang et al. 2020], but disconnects the artifact from its source
code repository. The good news is, that developers usually use build tools to manage and publish
distribution artifacts, and most build tools provide mechanisms empowering developers to declare
the source code repository in the package metadata. For example, setuptools, the de facto build tool
in the Python community, provides several optional keyword arguments (e.g., url, project_urls)
in the setup function for package developers to declare package-related URLs in the package
specification file such as setup.py [PyPA 2023c]. Then based on the package specification file,
setuptools automatically generates release metadata [PyPA 2023a] in the packaging process. How-
ever, repository information in the metadata is still not the final answer to the package-repository
linking problem. First, since the package’s source code repository information is not mandatory for
build tools, package developers may not declare such information in the package specification file. As
shown in this paper, about 30% of PyPI releases’ metadata do not contain repository information.
Consequently, it is impossible to mine insights from source code repositories for these packages.
Second, package developers may declare wrong repository information in the package specification
file intentionally or unintentionally. An extreme case is the prevalent typosquatting attack [Duan
et al. 2021; Ladisa et al. 2023; Ohm et al. 2020]. Malicious package developers usually copy the
metadata (including the repository information) of popular packages they masquerade as. Another
case is that developers did not change the placeholder repository URL. gh:pypa/sampleproject is a
sample project that guides developers on packaging and distributing Python projects, but we find
that 3,212 PyPI packages declare it as their source code repository. Wrong source code repository
information tends to mislead existing package monitoring tools such as Libraries.io [Tidelift 2015]
and open source insights [Google 2021c], and consequently, bias users’ decisions.
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Practitioners and researchers have implemented various tools [Microsoft 2020; PyPI 2023; Tidelift
2015; Vu 2021] to locate the repository for packages. However, these tools typically use the package
metadata, which inevitably traps them into the two limitations mentioned above, i.e. wrong or
unavailable repository information (that indicates where the repository is). To address the limi-
tations, it is necessary to validate the repository information retrieved from the metadata and to
utilize source code in the package to locate its repository when such information is unavailable in
metadata. To that end, we begin with a large-scale empirical study in PyPI and then leverage the
discovered insights to design a tool to retrieve the correct repository location for PyPI releases.
Specifically, the empirical study explores two research questions:

e RQ1: To what extent can existing tools retrieve source code repository information from the metadata
and what are their differences? Despite the plethora of metadata-based tools, there remains a lack
of understanding about their capabilities. Thus, we propose this RQ to understand the status quo
of techniques used to retrieve repository information from the metadata.

e RQ2: What are the phantom file differences between correct package-repository links and incorrect
links? Phantom files are files appearing in the release’s distribution but not in the release’s
repository, possibly indicating whether a release is built from a repository. Assuming the package-
repository link is correct, prior work [Vu et al. 2021] investigated phantom files and found that
Python files were rarely phantom files. However, to what extent phantom files differ between
correct and incorrect package-repository links has not been investigated. Such understanding is
vital for designing the tool that uses source code to validate and locate a package’s repository.
We collect ecosystem-scale metadata of 4,227,425 PyPI releases to answer the questions. We find

that existing tools retrieve repository information from the metadata for up to 70.5% of releases. We

also identify several best practices such as URL redirection and searching from multiple information

sources to locate the repository. We propose a heuristic approach to collect 14,375 correct and 2,064

incorrect package-repository links, and a novel Git repository traversal algorithm to accurately

identify phantom files. We find that the number of phantom files in incorrect links is significantly
higher and incorrect links are more likely to contain phantom package specification files.

Inspired by the empirical findings, we propose PYRADAR, a novel framework that utilizes the
release’s metadata and source distribution to automatically Retrieve And valiDAte the source code
Repository information for PyPI releases. PYRADAR consists of three components: a Metadata-
based Retriever similar to existing tools and two novel components to address the two limitations
of existing tools, i.e., a Source Code Repository Validator to deal with the limitation of incorrect
repository information in the metadata, and a Source Code-based Retriever to address the limitation
of missing repository information in the metadata. Specifically, the Metadata-based Retriever com-
bines best practices of existing tools and retrieves repository information for 72.1% of PyPI releases.
The Source Code Repository Validator validates the correctness of the repository information re-
trieved by the Metadata-based Retriever. It contributes six crafted features, two of which are derived
from the findings of RQ2. Common machine learning algorithms can achieve an AUC of up to 0.995
on these features, demonstrating their effectiveness. The Source Code-based Retriever uses source
code in a release’s source distribution to retrieve its repository from World of Code (WoC) [Ma
et al. 2019, 2021], an infrastructure that collects almost all public Git repositories. Inspired by the
findings of RQ2, we propose an efficient file hash-based repository retrieval algorithm. It retrieves
repository information for 90.2% of packages in our dataset with an accuracy of 0.970 and completes
a retrieval in an average of 40 seconds, demonstrating its effectiveness and efficiency.

In summary, the major contributions of this paper are:

o We conduct the first large-scale empirical study to compare existing metadata-based tools and
investigate phantom file differences between correct and incorrect package-repository links.
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Fig. 1. Overview of this study

e We propose a heuristic approach to automatically and accurately collect correct and incorrect
package-repository links to facilitate future research on this problem.

e We propose and evaluate PYRADAR, a novel framework that utilizes the metadata and source
distribution to automatically retrieve and validate repository information for PyPI releases. It
works for all PyPI releases (about 88% of all PyPI releases) that provide source distributions.
Figure 1 demonstrates the overview of this study, including the data collection (Section 3), the

empirical study (Section 4), and the PYRADAR framework addressing the two limitations (Section 5).

2 BACKGROUND AND RELATED WORK
2.1 Terminology

Based on the official Python Packaging Glossary [PyPA 2023b] and prior work [Gao et al. 2024; Vu
et al. 2021], we define the following terminologies for the convenience of discussion.

Package is a project registered on PyPI that ‘is intended to be packaged into a distribution’. A package
can be considered as a folder consisting of a collection of files, with package specification files
at the top-level folder. A package has one or more releases.

Release is a snapshot of a package at a certain time point and is identified by a version identifier. A
release consists of one or more distributions.

Distribution is a versioned archive file that contains the Python package. Distribution is what the
user will download from the package registries and install. There are two types of distributions:
source distribution and built distribution.

Source distribution is a distribution format that contains package specification files and all essential
files needed to generate built distributions.

Built distribution is another distribution format containing only metadata and files that will be
copied to the correct location on the user’s system at installation time. It contains pre-compiled
files such as .pyc files and . so/.d11 binary modules. However, Python files are not precom-
piled [PyPA 2023b]. Therefore, built distributions also contain Python source code.

Package specification file specifies build system information and release metadata. Currently, there
exist multiple package specification files including pyproject.toml, setup.py, and setup.cfg.
Multiple package specification files can coexist in a package.

Metadata contains descriptive information of a package such as name, version, and relevant URLs.

2.2 World of Code

World of Code (WoC) is an infrastructure for mining version control system data across the entire
open source software ecosystem. It collects Git objects including commits, trees, and blobs [Chacon
and Straub 2023] from nearly exhaustive public Git repositories on dozens of code hosting platforms
such as GitHub, Bitbucket, and GitLab. Based on the collected Git objects, WoC provides several
key-value databases for efficiently querying relationships between blobs, commits, repositories, and
other relevant entities. For example, the blob-to-commit database maps a blob to all commits that
introduced it; the commit-to-repository database maps a commit to all repositories that contain
it. It is regularly updated and versioned. At the time of experimentation in this paper, the latest
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Table 1. Existing tools that retrieve the PyPI package release’s source code repository information

Tool Provider = Language Platform Open Source
PyPI GitHub Statistics [PyPI 2023] PyPI Python GitHub v
0OSSGadget OSS Find Source [Microsoft 2023]  Microsoft C# GitHub v
Libraries.io [Tidelift 2015] Tidelift Ruby Multi-platform v
PY2SRC [Vu 2021] Duc-Ly Vu  Python GitHub v
Open Source Insights [Google 2021c] Google ? ? X
Snyk Advisor [Snyk 2023] Snyk ? ? X

version of WoC was labeled as U and the data was collected in October 2021, containing over 173
million Git repositories, 3.1 billion commits, 12.5 billion trees, and 12.4 billion blobs [swsc 2023].

2.3 Software Provenance

Software provenance refers to the origin and history of a software artifact such as code snippets

and files [Godfrey 2015]. In this sense, finding the package’s source code repository is a kind of

software provenance task. Rousseau et al. [Rousseau et al. 2020] investigated the problem of file
provenance in Software Heritage [Cosmo and Zacchiroli 2017], an infrastructure for preserving
software source code. Hata et al. [Hata et al. 2021] studied how the same file evolves in different
source code repositories. Reid et al. [Reid et al. 2022] developed a tool VDiOS based on WoC to
detect vulnerabilities induced by file reuse. Wyss et al. [Wyss et al. 2022] proposed UNWRAPPER to
detect shrinkwrapped clones in NPM where a package duplicates or near-duplicates the code of
another package. However, all these works are conducted at file-level granularity, different from the
distribution-level granularity (i.e., a collection of files) required by finding the package’s repository.

Sun et al. [Sun et al. 2023] proposed an identifier-based approach to map Debian source packages
written in Python to PyPI packages. They indexed identifiers (classes and method/function names)
in all PyPI packages and found that 76% of identifiers exist only in one package. Then they proposed
an approach that randomly selects three non-frequent identifiers and queries the PyPI identifier
corpus to locate the most probable PyPI packages. However, this work was conducted on the PyPI
package corpus, which is different from and much smaller than the source code repository corpus.

There are also some tools that automatically retrieve the package’s source code repository

information as summarized in Table 1.

e PyPI GitHub Statistics [PyPI 2023] is provided by the PyPI website. Specifically, it detects GitHub
repository URLs from the release’s metadata and presents statistics for the retrieved GitHub
repository such as the number of stars and forks in the sidebar of the package’s PyPI page.

o OSSGadget [Microsoft 2020] is a collection of software supply chain tools released by Microsoft,
one of which is OSS Find Source which attempts to locate a release’s source code repository on
GitHub. Similar to PyPI GitHub Statistics, OSS Find Source retrieves the release’s source code
repository information from the metadata.

o Libraries.io [Tidelift 2015] is an open source project maintained by Tidelift that collects package
information from 32 package registries including PyPL It also retrieves each package release’s
repository information from the metadata. Different from the above two tools, it detects reposi-
tories from multiple platforms.

e pY2sRC [Vu 2021] is a tool proposed by a researcher from the University of Trento. It retrieves
GitHub repository URLs from multiple information sources, including the package metadata and
the websites referenced by the metadata (i.e., the package’s homepage and Readthedocs page).
Then it returns the GitHub URL with the most occurrences.
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e Open Source Insights [Google 2021c] is a service developed and hosted by Google. It presents
comprehensive information about the package such as vulnerabilities, dependencies, licenses, and
the package’s OpenSSF scorecard [OpenSSF 2023] information based on the GitHub repository it
detects. Since this tool is not open source [Google 2021b], we have little information about its
implementation. But it claimed that the detected repository information is not guaranteed to be
authoritative as the package owner may list a link to any source code repository [Google 2021a].

e Snyk Advisor [Snyk 2023] is a service provided by Snyk. It presents the package’s maintenance
and community information based on the development activity data in the package’s repository. It
is also not open source. After manually inspecting several packages, we speculate it also retrieves
repository information from the metadata and only extracts GitHub repository URLs.

To summarize, existing tools mainly retrieve the release’s source code repository information
from the metadata and do not validate the correctness of the retrieved repository information.

3 DATA COLLECTION

We build two datasets to conduct this study: 1) the Metadata dataset for comparing existing
metadata-based tools (RQ1) and providing necessary information for the rest part of this study; 2)
the Package-Repository Link dataset, which is used to investigate phantom file differences between
correct package-repository links and incorrect links (RQ2) and lay a foundation on the design and
evaluation of the Source Code Repository Validator and the Source Code-based Retriever.

Metadata dataset. We build this dataset with PyPI API [PyPI 2023] in March 2023. Specifically,
we use the XML-RPC API to retrieve all packages registered on PyPI. We first get all its releases for
each package and then get the metadata for each release using the JSON API. In total, we obtain
metadata for 4,227,425 releases of 423,726 packages.

Package-Repository Link dataset. To validate the retrieved repository information of a release
is correct or not, we need to build a dataset consisting of correct package-repository links and
incorrect links. However, since the repository information in the metadata may be incorrect, it is
challenging to collect correct and incorrect package-repository links. We, therefore, propose a heuristic
approach to collect such data where we first collect correct package-repository links and then
collect incorrect links based on the correct links.

We turn to the GitHub dependency graph [GitHub 2023] (GDG for short) to collect correct links.
GDG identifies the packages associated with a GitHub repository, as shown in Figure 2. However,
there are some problems when using GDG: 1) most GitHub repositories do not publish packages;
2) GDG detects packages across multiple packaging ecosystems, therefore packages published
by different repositories may share the same name. For example, dmontagu/fastapi_client and
kevinastone/django-api-rest-and-angular both publish the example package with the former as
a Python package and the latter as a JavaScript package; 3) packages published by a repository
may not be registered on PyPI and may even have the same name as PyPI packages. E.g., the teras
package published by chantera/teras collides with the teras package on PyPI.

To address these problems, we first collect all source code repositories with at least 100 stars
and written in Python using GitHub search API (to tackle the first and second problem), since
popular repositories are more likely to publish packages [Borges et al. 2016; Wu et al. 2023]. We
obtain 50,359 repositories in total. Then we collect packages published by these repositories by
crawling each repository’s dependency graph page, resulting in 14,471 packages. Next, we keep
packages registered on PyPI by aligning GitHub package names with those in the Metadata dataset
(to tackle the third problem), leaving 12,463 packages published by 11,803 GitHub repositories. We
also include the top 4,000 most downloaded packages with their source code repository information
retrieved by the Metadata-based Retriever. We consider these packages’ repository information
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Fig. 2. GitHub dependency graph page of the repository gh:numpy/numpy

correct since they have a high impact on the Python community and have been widely studied in
prior work [Vu 2021; Vu et al. 2021; Xu et al. 2023]. In total, we collect 14,375 correct links.

To evaluate the effectiveness of the approach to collecting correct links, we randomly sample
374 links (95% confidence level and 5% confidence interval). For each link, we check: 1) if the
package name is declared in any package specification file in the repository; 2) if the package’s PyPI
maintainer [Foundation 2023a] (presented in the sidebar of the package’s PyPI page) is a contributor
to the repository (using common name abbreviation rules and user avatars); 3) if the repository
or the documentation website referenced by the repository contains a link to the package’s PyPI
page or pip install commands with the package name. It is non-trivial to automate the three
conditions accurately. Specifically, package developers can declare package names in the package
specification file setup.py in various ways, posing challenges in automating the first condition.
The second condition, linking PyPI accounts and GitHub accounts, involves a trade-off between
precision and recall due to incomplete and inconsistent information on different platforms [Fang
et al. 2020; Silvestri et al. 2015; Vasilescu et al. 2013]. The challenge of automating the third condition
(searching for explicit mutual links between packages and repositories) is that relevant information
is scattered and buried deep within repositories and related websites. Therefore, we choose manual
checking over automated checking as it allows us to check the correct links with 100% accuracy,
which is important for verifying the validity of collected correct links. We label a link as correct if
it satisfies the first condition and one of the last two conditions. In total, 373, 369, and 349 links
satisfy the three conditions respectively and 373 (99.7%) links are labeled as correct. The remaining
link is not labeled as correct due to the complex packaging process of the ansible package [project
contributors 2023]. It is noteworthy that the checking process is only a sufficient condition for a
link to be correct. If a link does not meet the checking criteria, we can not assert it as incorrect.
Overall, the manual inspection indicates the validity of the collected links.

Based on the correct links, we collect incorrect links as follows. We presume that the maintainers
of PyPI packages are developers in the package’s source code repository responsible for publishing
releases. If two packages declare the same source code repository but have different maintainers, it
is likely that one package’s source code repository information is incorrect. Under this assumption,
we select packages that have the same source code repository as packages in the correct links but
have different PyPI maintainers. In this way, we obtain 1,721 links. As noted in Section 1, over 3,000
packages declare their source code repository as gh:pypa/sampleproject by mistake. Therefore,
we expand the incorrect link data with these packages. Considering the large number of such
packages, we randomly select 343 packages (95% confidence level and 5% confidence interval) to
avoid them skewing the dataset. In total, we collect 2,064 incorrect package-repository links.

We verify the validity of incorrect links as follows. Since we are sure the incorrect correspondence
between the 343 sampled packages and the gh:pypa/sampleproject repository, we sample 314
links (95% confidence level and 5% confidence interval) from the rest of 1,721 links. For each link, we
manually check if the package name is specified in the source code repository. If not, we label it as
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Table 2. The percentage of releases and packages for which the four reimplemented tools successfully retrieve
repository information. Data in parentheses represents the adjusted percentage after URL redirection.

PyPI GitHub Statistics ~ OSS Find Source Libraries.io PY2SRC
Releases 72.6% (67.2%) 72.7% (67.3%) 74.8% (68.4%) 75.5% (70.5%)
Packages 68.4% (60.9%) 68.5% (61.0%) 70.6% (62.2%) 70.2% (63.1%)

incorrect. In total, 312 (99.4%) links are labeled as incorrect. The rest two links are correct due to the
move of the package’s source code repository [Edward2 2019] and package renaming [coursera—dl
2016]. Overall, the inspection results suggest that the collected incorrect links are valid.

4 EMPIRICAL STUDY
4.1 RQ1: Existing Tool Analysis

Given the many metadata-based tools available, a clear understanding of their effectiveness and
discrepancies can help better retrieve the release’s repository information from the metadata.
Specifically, we aim to understand the number of PyPI releases for which existing tools can retrieve
repository information and the differences in the retrieved repository information.

4.1.1 Method. We select PyPI GitHub Statistics, OSS Find Source, Libraries.io, and py2src for
this RQ since they are open source, which enables us to make comparisons on the complete PyPI
releases. However, since these tools are tightly tied to their contexts and used in different ways, it
is difficult to deploy them on our Metadata dataset. We, therefore, choose to carefully reimplement
them to facilitate the evaluation of their capabilities on the metadata of 4,227,425 PyPI releases.
To ensure that the reimplemented tools are consistent with the original ones, we test them with
test cases from the original tools. Then, we deploy them on our dataset and obtain the repository
information retrieved by these tools for each release. To understand the discrepancies between these
tools, we perform a stratified sampling of the differences in the retrieved repository information of
the four tools and identify reasons for the differences based on the implementation of these tools.
The number of sampled data for each pair of tools is shown in the parentheses of Table 3.

4.1.2  Results. Table 2 presents the percentage of releases and packages for which the four reim-
plemented tools retrieve repository information. It is worth noting that the retrieved repository
information may be incorrect. We can observe that existing tools can retrieve repository informa-
tion for about 3/4 of releases and 70% of packages, suggesting that substantial releases’ metadata
does not contain repository information. Libraries.io and pyY2sRc retrieve repository information
for more releases since Libraries.io takes more code hosting platforms into account and py2src con-
siders more information sources such as the homepage and Readthedocs page. The repository
URLs retrieved by Libraries.io come from GitHub (3,032,984), GitLab (68,670), Bitbucket (53,668),
SourceForge (5,918), ASF Subversion Server (2), and ASF GitBox Services (1). In the following, we
only analyze the differences in the retrieved GitHub repository URLs.

The four tools retrieve different GitHub repository URLs for 511,480 (12.1%) releases. Table 3
presents the percentage of releases for which the four tools retrieve different GitHub repository
URLs. The difference between PyPI GitHub Statistics and OSS Find Source is the least (0.16%) since
they only differ in how the GitHub repository URL is extracted. PyPI GitHub Statistics uses the
URL scheme while OSS Find Source uses the regular expression. py2src differs from the remaining
three tools a lot (10.47% ~ 11.86%).

Table 4 presents the seven identified reasons for the differences in the retrieved repository
information of the four tools. URL redirection is the most common reason for the differences. Only
PY2SRc deals with URL redirection when retrieving repository URLs from some information sources.
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Table 3. The percentage of releases for which the four reimplemented tools retrieve different GitHub repository
URLs. Data in parentheses represents the number of sampled differences for each pair of tools.

PyPI GitHub Statistics ~ OSS Find Source  Libraries.io PY2SRC

PyPI GitHub Statistics - - - -
OSS Find Source 0.16% (2) - - -
Libraries.io 2.06% (26) 2.02% (25) - -
PY2SRC 10.47% (104) 10.43% (103)  11.86% (121) -

Table 4. Reasons for the differences in the retrieved repository information of the four reimplemented tools.

Reason Percentage
URL redirection 62.2% (237)
project_urls field searching 12.6% (48)
Badge URL searching 12.3% (47)
Readthedocs searching 8.9% (34)
URL Extraction method 5.2% (20)
Homepage searching 3.9% (15)
Other 1.6% (6)

We also present the adjusted percentage of releases and packages for which the four tools retrieve
repository information after URL redirection in Table 2 (in parentheses). We can observe that
existing tools can retrieve repository information for up to 70.5% of releases and 63.1% of packages.
It suggests that URL redirection should be considered when retrieving repository information from
the metadata due to the URL decay. The strategy of searching project_urls field accounts for the
second most differences. This field is an arbitrary map of names to URLs. Libraries.io takes a rather
conservative approach by searching only URLs whose names are in a predefined list, thus omitting
repository URLs with other names. The badge URL, Readthedocs page, and Homepage searched
by Py2src account for about 1/4 of the differences. Different URL extraction methods also lead to
different retrieved repository information. Specifically, PyPI GitHub Statistics and PY2src extract
repository URLs according to the URL scheme while OSS Find Source and Libraries.io rely on
regular expressions. We find that regular expressions are more robust since the URL information
provided by developers may not strictly observe the URL scheme. It is noteworthy that these
reasons may contribute to inaccuracies when retrieving repository information from the metadata.
For example, when the metadata contains multiple URLs linking to repositories on code hosting
platforms, these tools may select different URLs due to different retrieval strategies, leading to
incorrect repository information retrieved by certain tools.

s N

Answers for RQ1: The four reimplemented tools can retrieve repository information from the
metadata for up to 70.5% of releases and 63.1% of packages. The percentage of differences in the
repository information retrieved by the four tools ranges from 0.16% to 11.86%. Seven reasons
induce the differences such as URL redirection and the project_urls searching strategy.

Implications: When retrieving repository information from the metadata, it is necessary to
take the following elements into account: URL redirection, multiple code hosting platforms,
multiple information sources that are contained in the metadata, and badges, homepage, and
Readthedocs page that are referred by the metadata.
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4.2 RQ2: Phantom File Analysis

Prior work has revealed that most Python files in the release distribution also exist in the release’s
repository [Vu et al. 2021], which sheds light on how to validate the correctness of the release’s
repository information retrieved from the metadata and how to retrieve the release’s repository
using source code in the release’s distribution. Thus, our second research question aims to under-
stand the differences in phantom files (files appearing in the release’s distribution but not in the
release’s repository) between correct package-repository links and incorrect links.

4.2.1 Method. The basic idea of obtaining phantom files is to traverse all files in the release’s
distribution and the release’s source code repository, calculate their hashes, and find the files whose
hashes appear in the distribution but not in the repository.

As noted in Section 2.1, a release consists of one or more distributions and there are two kinds of
distributions in a release: source distribution and built distribution. We choose source distribution
to obtain phantom files for two reasons:

e The number of releases providing source distributions is much higher than the number of releases
providing built distributions (3,719,068 vs. 2,892,007). Therefore, the source distribution enables
us to analyze more releases.

o For the 2,419,223 releases providing both source distributions and built distributions, we randomly
select one release for each package, resulting in 243,518 releases. For each release, we compare
files in the source distribution and built distribution. We find that files in the built distribution
are all included in the source distribution for 216,741 (89.0%) releases. Among the remaining
releases, the built distributions mostly contain pre-compiled files (such as . pyc files, .so binary
modules), which are usually not included in the repository.

It is straightforward to get hashes for all files in the distribution. We download the distribution,
open it with the Python standard library tarfile (for .tar.gz distribution files) or zipfile (for
.zip distribution files) [Foundation 2023b], traverse files in it, and calculate each file’s blob SHA-1
hash [Chacon and Straub 2023]. We choose the blob SHA-1 hash because Git uses it to index files
so that we don’t have to calculate hashes for files in the repository.

However, it is challenging to traverse all files in the repository due to the complex Git-based devel-
opment [Bird et al. 2009], especially the adoption of Git submodules [Scott and Ben 2023]. Submodules,
which are configured in the . gitmodules file, allow developers to add a Git repository as a subfolder
of another Git repository. We find submodules also popular in PyPI releases’ repositories. Specifi-
cally, among the 3,047,112 releases for which the Metadata-based Retriever retrieves repository
information, 159,360 (5.2%) releases’ repository use submodules such as numpy and scipy. Files in
submodules are also packaged into distributions. If not considering submodules when traversing
files in the repository, many false positive phantom files will be identified. To make things more com-
plicated, submodules are updated over time. To properly deal with Git submodules and accurately
identify phantom files, we propose a novel Git repository traversal algorithm (Algorithm 1).

This algorithm traverses all commits to obtain a complete list of files in the repository. We use
the Git command: git cat-file --batch-check --batch-all-objects --unordered (line 4) to
ensure that all commits are traversed. For each commit, we obtain the tree object it points (line 6)
and traverse the tree in a recursive way (traverse_tree) to obtain all files in the commit snapshot
(line 7). Specifically, we first list all entries in the tree object, where each entry consists of the SHA-1
hash of a blob, tree, or commit object with its associated mode, type, and filename. We process each
entry as follows:

o If the entry points to a blob object, we simply record its name and SHA-1 hash (line 14-15). If the
blob’s filename is ".gitmodules", we parse the path and URL of submodules configured in this
file with the Python standard library configparser (line 16-17).
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Algorithm 1: Traversing files in a Git repository
Input: A Git repository URL: URL
Output: A set of tuples with the file name and the file’s SHA-1 hash: &
1 function traverse(URL)
2 F—0
3 repo_dir < open_repository(URL)
4 C « list_commits(repo_dir, URL)

5 for commitc € C do

6 t « get_root_tree(repo_dir, c)
7 F «— F U traverse_tree(URL, t)
8 return ¥

9 function traverse_tree(URL, t)
10 f<0
1 repo_dir < open_repository(URL)

12 submodules «— 0

13 for entry e € list_tree_entries(repo_dir,t) do

14 if e is a blob object then

15 f.add((e.filename, e.shal))

16 if e.filename = " .gitmodules" then

17 ‘ submodules « parse_gitmodules(e.content)

18 else if e is a tree object then

19 ‘ f « fUtraverse_tree(URL, e)

20 else if e is a commit object then

21 submodule_url < submodules.get(e.path)

22 submodule_dir « open_repository(submodule_url)

23 submodule_tree < get_root_tree(submodule_dir, e.shal)
24 f « f U traverse_tree(submodule_url, submodule_tree)
25 return f

Table 5. Comparison of our algorithm with LASTPYMILE. % marks repositories using submodules.

# of Repository Files  # of Phantom Files

Package Repository # of Distribution Files

LASTPYMILE  Ours LASTPYMILE Ours
six gh:benjaminp/six 11 743 743 1 1
certifi gh:certifi/python-certifi 10 240 240 1 1
numpy k gh:numpy/numpy 2,231 64,506 63,719 296 4
scipy % gh:scipy/scipy 18,855 66,600 89,939 15,581 0

o If the entry points to a tree object, we traverse files in it and merge the result (line 18-19).

o If the entry points to a commit object, which indicates a submodule, we get the submodule’s Git
URL, obtain the tree object pointed by the commit object, and traverse files in the tree object of
the submodule (line 20-24).

We implement this algorithm with as many operations provided by Git as possible to ensure

a correct implementation. We make a simple comparison with LASTPYMILE proposed in prior

work [Vu et al. 2021], which did not consider submodules when traversing the repository, on four

popular packages, two of which do not use submodules in their repositories and the other two
of which use submodules in their repositories. The comparison results (Table 5) indicate that our
algorithm can properly deal with submodules and identify more accurate phantom files.
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Fig. 3. Distribution of the number of phantom files and phantom Python files in correct and incorrect links.

Table 6. The 10 most common files and Python files in source distributions of in correct package-repository
links. The two numbers in the cell correspond to the file’s inclusion rate and phantom rate, respectively.

FiLEs CORRECT INCORRECT | PyTHON FILES CORRECT INCORRECT
__init__py 93.4%, 6.8% 93.7%, 48.5% | __init__.py 93.4%, 6.8%  93.7%, 48.5%
setup.cfg 87.8%, 98.1% 93.0%, 99.3% | setup.py 94.7%, 16.6%  93.0%, 96.4%
setup.py 94.7%, 16.6%  93.0%, 96.4% | utils.py 28.8%,4.1% 25.9%, 31.1%
README.md 58.5%, 7.9% 55.5%, 58.0% | conf.py 12.8%, 4.4% 15.9%, 54.1%
MANIFEST.IN 54.7%,6.1% 49.1%, 21.0% | exceptions.py 14.0%, 4.5% 15.3%, 24.1%
LICENSE 54.3%, 4.5% 43.5%,31.0% | base.py 13.6%, 4.1% 12.8%, 37.9%
README.rst 33.5%, 6.6% 37.2%,41.0% | __main__.py 13.7%, 8.2% 12.4%, 36.7%
utils.py 28.8%,4.1% 25.9%,31.1% | conftest.py 9.0%,3.5% 12.1%, 57.0%
pyproject.toml 24.3%,9.2% 25.2%, 64.6% | models.py 9.0%, 3.2% 10.6%, 37.6%
requirements.txt 16.3%, 5.2% 17.9%, 40.9% | version.py 11.7%, 18.6% 9.6%, 51.0%

We use the Package-Repository Link dataset to conduct this RQ. Specifically, for each (correct
and incorrect) link in the dataset, we first download the source distribution of the package’s latest
release and obtain the blob SHA-1 hashes of files in the distribution. Then we clone the source code
repository and obtain all blob SHA-1 hashes following Algorithm 1. Finally, we get phantom files
by comparing SHA-1 hashes in the distribution and the repository.

4.2.2  Results. Figure 3 demonstrates the distribution of the number of phantom files and phantom
Python files in the correct and incorrect links. It can be clearly observed that the number of phantom
files and phantom Python files in the correct links is much lower than that in the incorrect links,
with the significance confirmed by the Mann-Whitney U test [Mann and Whitney 1947]. Specifically,
the median number of phantom files in the correct and incorrect links is 1 and 5 respectively, and
the median number of phantom Python files is 0 and 3 respectively. It is also noteworthy that 75.3%
of the correct links do not have phantom Python files whereas 96.2% of the incorrect links have at
least one phantom Python file, suggesting that the number of phantom Python files may be useful
to validate the correctness of a release’s repository information and Python file in the release’s
source distribution may be used to retrieve the release’s repository from WoC.

Table 6 presents the 10 most common files and Python files in source distributions of incorrect
links. To derive effective features for identifying as much incorrect repository information for the
release as possible, we calculate the inclusion rates and phantom rates of the files. The inclusion
rate of a file is defined as the proportion of correct (incorrect) links that include the file in the
source distribution compared to the total number of correct (incorrect) links. The phantom rate
of a file is defined as the proportion of correct (incorrect) links in which the file is a phantom file
compared to the number of correct (incorrect) links that include the file in the source distribution.
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Almost every correct link and incorrect link include the package specification file setup.py or
pyproject.toml in the source distribution, as revealed by the inclusion rates in correct links (99.5%)
and incorrect links (99.2%). However, the phantom rate of setup.py or pyproject.toml differs
greatly between correct (16.6%) and incorrect (97.0%) links. The results indicate that the presence
of a phantom package specification file (setup.py or pyproject.toml) could serve as an effective
feature in identifying incorrect repository information for the release: an inclusion rate close to 1
indicates that it is calculable for almost every package-repository link and the high phantom rate in
incorrect links indicates that it achieves a high recall in identifying incorrect repository information.
Despite the high phantom rate of README (README . md or README . rst) or LICENSE in incorrect
links compared to correct links, the presence of a phantom README or LICENSE is not effective in
identifying incorrect repository information for two reasons: 1) the relatively low inclusion rates
(91.0% in correct links and 91.9% in incorrect links) suggest that it is incalculable for nearly 10%
of links; 2) the low phantom rate (51.6%) in incorrect links indicates its low recall. Notably, the
phantom rates of setup.cfg (another package specification file) in correct and incorrect links are
both close to 1. We manually inspect 10 correct links with the phantom setup. cfg file and find that
7 of them do not contain the setup. cfg file in the repository, indicating that most of the phantom
setup. cfg files are generated in the build process. Overall, the results indicate that whether the
package specification file setup.py or pyproject.toml is a phantom file may be used to identify
incorrect repository information for the release.

e Y

Answers for RQ2: The number of phantom files and phantom Python files in the incorrect
links is significantly higher than in the correct links. Python files are generally not phantom
files in the correct links. The percentage of phantom package specification files (setup.py or
pyproject.toml) in the incorrect links is much higher than in the correct links.

Implications: The number of phantom Python files and whether the package specification file
setup.py or pyproject. toml is a phantom file may be useful features to validate the correctness
of a release’s repository information. Retrieving a release’s repository from WoC using only
Python files in the release’s source distribution may be sufficient and efficient.

\ J

5 THE PYRADAR APPROACH

Inspired by the empirical findings from Section 4, we propose PYRADAR, a framework that utilizes
the release’s metadata and source code to automatically retrieve and validate the release’s source
code repository information. As shown in Figure 4, PYRADAR consists of three components:

e Metadata-based Retriever. It retrieves repository information from the release’s metadata.

o Source Code Repository Validator. It validates the correctness of the release’s repository infor-
mation retrieved by the Metadata-based Retriever. If the repository information is validated as
correct, it will then be output.

e Source Code-based Retriever. If the Metadata-based Retriever fails to retrieve repository in-
formation from the release metadata or the Source Code Repository Validator concludes that
the release’s repository information retrieved from the metadata is incorrect, this component
retrieves the release’s repository from WoC using files in the release’s source distribution. If this
component fails to retrieve a repository, the output is empty.

In this section, we elaborate on the design and evaluation of each component.

5.1 Metadata-based Retriever

5.1.1 Design. We design this component following the best practices learned from existing
metadata-based tools (Section 4.1). It first searches for repository URLs with regular expressions
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Fig. 4. Overview of the PYRADAR framework

from the url, download_url, and project_urls fields in the release metadata sequentially. If any
repository URL is found, it returns the redirected repository URL. Otherwise, it searches the
description field in the release metadata for repository URLs and badge URLs. It only returns the
redirected URL whose repository name is exactly the same as the package name after removing
non-alphanumeric characters. If still no repository URL is found, it searches for the homepage URL
and documentation page URL in the project_urls field, scrapes the homepage and documentation
page, extracts repository URLs in them, and returns the redirected URL with the repository name
exactly the same as the package name after removing non-alphanumeric characters. In the current
implementation, it considers repositories on the three most popular code hosting platforms, i.e.,
GitHub, GitLab, and Bitbucket. It resolves URL redirections for GitHub repositories via the GitHub
Repository API and for Bitbucket and GitLab repositories via HTTP requests.

5.1.2  Evaluation. We implement this component in Python and run it on the entire Metadata
dataset. It successfully retrieves source code repository information for 72.1% of the releases (79.1%
before URL redirection), 1.6% higher than the existing state-of-the-art tool py2src. The improvement
of the Metadata-based Retriever over existing tools is minor, possibly because only about 70% of
the releases’ metadata contain repository information. Similar to other metadata-based tools, our
Metadata-based Retriever will retrieve incorrect links when 1) the metadata does not contain a
correct repository URL, or 2) the metadata contains a correct repository URL but the retriever
selects another URL. Therefore, we design the Source Code Repository Validator to validate the
correctness of the repository information retrieved by the Metadata-based Retriever.

5.2 Source Code Repository Validator

5.2.1 Design. The goal of this component is to validate the correctness of the repository information
retrieved from the metadata. We design it as a classifier where the input is a pair of a release and a
repository and the output is the probability of the input being an incorrect link. Inspired by the
findings of RQ2 (Section 4.1) and prior work [Taylor et al. 2020; Vu 2021; Vu et al. 2020], we derive
six crafted features (Table 7).

o According to Section 4.2, the correct link and incorrect link differ a lot on the number of phantom
Python files and whether the package specification file setup.py or pyproject. toml changes.
Therefore, we propose the #phantom_pyfiles and pkg_spec_change feature.

e Prior work [Vu 2021] manually checked the alignment of the repository tags and PyPI releases’
version identifiers to determine a reliable repository for a release. After manually inspecting
the release’s version identifier and the repository’s tag in some correct links, we find that the
repository tags usually end with the release’s version identifier (e.g., v1.2.1 and 1.2.1). Therefore,
we propose the tag_alignment feature which is set to 1 if any tag in the repository ends with
the release’s version identifier otherwise 0.

o Name similarity is also used to determine a release’s reliable repository [Vu 2021] and iden-
tify typosquatting packages [Taylor et al. 2020; Vu et al. 2020]. Therefore, we consider the
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Table 7. Description of the six crafted features.

Feature Description

#phantom_pyfiles The number of phantom Python files

Whether the package specification file setup.py or pyproject.toml is a

pkg_spec_change phantom file or not

tag_alignment Whether the release’s version identifier aligns with any tag in the repository.

The normalized Levenshtein similarity between the package name and the

name_similarit . .
- Y repository name, ranging from [0, 1].

#maintainers The number of maintainers of the package

#maintainer_pkgs The number of packages maintained by the package’s maintainers

name_similarity feature useful for validating the correctness of the release’s repository infor-

mation as well. This feature is measured by the normalized Levenshtein similarity [Levenshtein

et al. 1966] between the package name and the repository name, ranging from [0, 1].

o We also take the release’s maintainer information into account, i.e., the #maintainers and
#maintainer_pkgs feature. Intuitively, if a package is maintained by more experienced developers,
it is less likely to declare incorrect repository information.

We collect the six features for each link in the Package-Repository Link dataset,! including 14,375
correct links (labeled as 0) and 2,064 incorrect links (labeled as 1). Then we train machine learning
models on the collected features. Specifically, we try seven commonly used models including
Logistic Regression, SVM, Decision Tree, Random Forest, AdaBoost [Freund and Schapire 1997],
Gradient Boosting Decision Tree [Friedman 2001], and XGBoost [Chen and Guestrin 2016]. Due to
the imbalanced distribution of correct and incorrect links in the dataset, we employ resampling
techniques on the training set for all models, which is a common practice to address the issue
of unbalanced samples [Tian et al. 2022; Xiao et al. 2022]. We tune hyperparameters for each
model with grid searching and select the best-performing model. Since the dataset is imbalanced
and the relative ranking of incorrect links matters more, we choose AUC (Area under the ROC
Curve) [Hanley et al. 1982] as the performance metric. AUC provides an evaluation of the model’s
performance across various classification thresholds and quantifies the probability that a random
positive sample will have a higher ranking than a random negative sample [Melo 2013].

5.2.2  Evaluation. Table 8 presents the optimal performance of each model in identifying the
incorrect link. We also present the accuracy, precision, and recall at a threshold of 0.5 as a reference.
From Table 8, we can observe that either model archives an AUC higher than 0.95, possibly indicating
the effectiveness of the six features. Random Forest outperforms the other models with an AUC
of 0.995. It also achieves the highest recall score (0.989), suggesting that it can discover the most
incorrect links in the test set. So we choose it as the classification model of this component. We
also perform feature importance analysis to demonstrate how important each feature is for the
fitted Random Forest model. Specifically, we use the permutation importance [Breiman 2001], a
well-known technique to measure the contribution of each feature to the fitted model. It is calculated
by randomly shuffling the values of a feature and observing the resulting degradation of the model’s
score. The results show that name_similarity is the most predictive feature (importance value:
0.117) followed by pkg_spec_change (importance value: 0.028) and #phantom_pyfiles (importance
value: 0.026). The importance scores for the remaining three features are all below 0.010.

1We only select the latest release for each package.
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Table 8. Performance of the seven machine learning models. Accuracy, precision, and recall are calculated at
a threshold of 0.5.

Approaches AUC Accuracy Precision Recall
Logistic Regression 0.963 0.890 0.744 0.871
SVM 0.981 0.928 0.814  0.933
Decision Tree 0.982 0.966 0.918  0.954
Random Forest 0.995 0.973 0913 0.989
AdaBoost 0.992 0.950 0.846  0.984
Gradient Boosting Decision Tree ~ 0.992 0.974 0.936  0.963
XGBoost 0.991 0.972 0.937  0.956

We then use this component to validate the repository information retrieved by the Metadata-
based Retriever. The Metadata-based Retriever successfully retrieves repository information for
3,047,112 releases (273,273 packages). We exclude packages in the Package-Repository Link dataset
and select the latest release that provides the source distribution for each package, resulting in
228,448 releases. We then use the trained Random Forest model to output the probability of the link
between the release and the retrieved repository being an incorrect link. We manually inspect the
top 100 links with the highest probability and find that 85 (85%) of these links are indeed incorrect.
For the remaining 15 correct links, we find the package name differs a lot from the repository name
(name_similarity < 0.25), which may lead to a high probability.

5.3 Source Code-based Retriever

5.3.1 Design. This component relies on the World of Code (WoC) [Ma et al. 2019, 2021] infras-
tructure due to its extensive collection of public repositories and convenient APIs. However, the
millions of repositories in WoC pose a great challenge in efficiently locating a release’s correct repository
based on source code. To tackle this challenge, we propose a simple and efficient file hash-based
algorithm based on the findings of RQ2. Specifically, this component retrieves a release’s repository
from WoC using Python files in its source distribution. We only use Python files since most of
them are present in both the release’s source distribution and the release’s repository (Section 4.2),
thus establishing a good link between the release and the repository. We use correct links in the
Package-Repository Link dataset to design and evaluate this component. Among the 14,375 correct
links, the repositories of 12,375 (86.1%) links are indexed by WoC.

This component first retrieves candidate repositories from WoC following the get_candidate
function in Algorithm 2. For each Python file in the release’s source distribution, it gets the
first commit that introduces this file via the blob-to-commit database (line 4-5). Then it gets all
repositories containing this commit (thus the file) via the commit-to-repository database (line 6).
To speed up the retrieval and reduce the candidate set, we only consider files that do not exist in
many repositories controlled by a threshold blob_uniqueness (line 7-8). Finally, we rank candidate
repositories by the number of Python files in the source distribution that they contain.

To select the correct candidate, we manually inspect 373 links (95% confidence level and 5%
confidence interval) from the 12,375 links and find that the top-ranked candidates are either the
correct repository or forks of the correct repository in most (360, 96.5%) links. Therefore, we choose
the topn candidate repositories, find their upstream forked repository, and select the most common
repository. To ensure the correctness of the retrieved repository, we only return the repository whose
name similarity with the release’s package name is above a threshold name_similarity. Increasing
the threshold improves the accuracy but reduces the percentage of releases for which this component
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Algorithm 2: Retrieving repository from WoC

Input: A release’s source distribution: sdist
Output: The most probable repository: r
1 function get_candidate(sdist, blob_uniqueness)

2 R0

3 for Python file f € sdist do

4 blob_sha « calculate_sha(f)

5 ¢ « get_first_commit(blob_sha)

6 repos < query_c2p(c)

7 if len(repos) < blob_uniqueness then
8 ‘ R «— R U (repos, f)

9 R.rank()

10 return R

11 function get_most_probable(sdist, blob_uniqueness, topn, name_similarity)
12 repos < 0

13 R « get_candidate(sdist, blob_uniqueness)

14 for repor € select_topn(R, topn) do

15 ‘ repos < repos U defork(r)

16 r < most_common(repos)

17 if similarity(r, sdist.name) < name_similarity then
18 ‘ r « null

19 return r

can retrieve repositories from WoC (i.e., the coverage), while decreasing it increases the coverage but
reduces the accuracy. We heuristically set blob_uniqueness = 500, topn = 5, name_similarity = 0.5,
which we find produce satisfactory results.

5.3.2 Evaluation. We evaluate the algorithm on the 12,375 correct links.? The algorithm can
successfully retrieve repository information from WoC for 11,165 releases (i.e., coverage: 0.902)
with an accuracy of 0.970. Table 9 shows the retrieval accuracy and coverage under different
name_similarity setting. When setting name_similarity as 1, the accuracy increases to 0.986 but
the coverage decreases to 0.757; when setting name_similarity as 0, the coverage increases to
0.986 but the accuracy decreases to 0.930. Therefore, we set name_similarity as 0.5 to strike a
balance between retrieval coverage and accuracy. We run this component on the rest releases for
which the Metadata-based Retriever can not retrieve repositories. We only select the latest release
before October 2021 for each package, resulting in 81,751 releases. This component successfully
retrieves repository information for 32,139 (39.3%) releases from WoC. The relatively low ratio
may be attributed to the fact that many releases have repositories that are either not public or not
indexed by WoC. We manually inspect 100 releases and find that this component correctly retrieves
repository information for 90 releases, yielding an accuracy of 90%. On average, it takes 40 seconds
to complete a repository retrieval, suggesting its high efficiency.

The Metadata-based Retriever and Source Code-based Retriever retrieve repository information
using the release’s metadata and source distribution, respectively. Therefore, we compare their
retrieval results to further validate the two components. Specifically, the Metadata-based Retriever
finds repository URLs for 3,047,112 releases of 273,273 packages. To conduct the comparison, we
first select the most recent release before October 2021 (the time of WoC U version data collection)

2For each link, we use the package’s latest release before October 2021, the time when the WoC version U data was collected.
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Table 9. Retrieval coverage and accuracy under different name_similarity settings.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Coverage 0.986 0.985 0976 0.954 0.927 0.902 0.876 0.843 0.803 0.768 0.757
Accuracy 0.930 0.932 0.939 0.954 0.965 0.970 0.975 0.979 0.982 0.985 0.986

for each package. Then, we keep releases that 1) provide a source distribution for the Source
Code-based Retriever to use and 2) have their repository retrieved by the Metadata-based Retriever
indexed by WoC. Finally, we obtain 173,809 releases. The Source Code-based Retriever successfully
retrieves repository URLs for 143,035 (82.3%) of the selected releases, with 131,710 (92.1%) the same
as the repository URLs retrieved by the Metadata-based Retriever, indicating a high consistency
between the results of the two components.

5.4 Overall Evaluation

We evaluate PyRadar on the Package-Repository Link dataset with 14,375 correct and 2,064 incorrect
links. For a release in the correct link, the expected output is the repository URL in the link. For a
release in the incorrect link, the expected output is empty since there is no sufficient information
to manually pinpoint its exact repository. As a result, PyRadar achieves an accuracy of 0.88.

6 LIMITATIONS

Several limitations pertain to the Package-Repository Link dataset. First, we rely on the black-box
GitHub Dependency Graph to collect correct links. Therefore, we can not guarantee the accuracy
of GDG data. To alleviate this threat, we carefully select popular Python repositories and conduct a
manual evaluation to confirm the validity of the collected data. Second, the correct links are skewed
towards popular packages and popular repositories, which may compromise the representativeness
of the data. However, considering the number (14 375, 3.4% of all PyPI packages) and the monthly
downloads (ranging from 28 to 1.02 million) of the collected packages, we believe the collected data
are sufficiently representative. Third, we assume a link is incorrect where the package is linked to
a repository that is the same as the repository in the correct link but with a different maintainer.
The assumption has not been systematically tested and may threaten the validity of the collected
data. We conduct a manual evaluation of the collected data to alleviate this threat.

In terms of the empirical study, its main threat is the reimplementation of the four tools. To
alleviate this threat, we borrow test cases from the original tools to ensure the consistency of the
reimplemented tools with the original ones. Also, due to the complexity of Git, the implementation
of the repository traversal algorithm may threaten the internal validity. We use as many git native
operations as possible to ensure the correctness of the implementation. Therefore, we believe the
empirical study is conducted on a solid basis of correct implementation.

Despite the three most popular code hosting platforms considered by the Metadata-based Re-
triever, the package’s source code repository may be hosted on other platforms such as SourceForge
and other self-hosted platforms, e.g., GitLab at Inria. However, this component can be easily ex-
tended by adding new regular expressions to match repositories on these platforms. The major
limitation of the Source Code-based Retriever is the dependence on the external infrastructure, WoC.
Despite the relatively complete collection of open source Git repositories in WoC, it is impossible
for WoC to contain all repositories. Besides, the several-month update [Gao et al. 2023] delay of
WoC means that the Source Code-based Retriever can only be run periodically to retrieve repository
information for releases uploaded to PyPI during the update interval. Despite these limitations, we
believe WoC is still the most suitable infrastructure for our tool. Finally, PYRADAR fails to retrieve a
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package’s repository when 1) the package’s repository is not public, e.g., hosted locally or privately.
2) the package’s repository is public but is neither declared in the metadata nor indexed by WoC.

Due to the different usage scenarios and the challenge of automatically and accurately collecting
ground truth, i.e., correct and incorrect package-repository links, the components are evaluated on
different datasets, which may induce the overfitting issue. To evaluate the generalization of the
second and third components, we run the second component against 228,448 package-repository
links from the first component and run the third component against 81,751 releases for which the
first component fails to retrieve repository information, which align with their practical usage
scenarios. The manual inspection reveals that the two components achieve an accuracy of 85% and
90% respectively, suggesting the overfitting issue induced by different evaluation datasets is minor.

In terms of external validity, the dataset collection approach is dedicated to PyPl. We believe
the correct link collection part can be generalized to other package registries since GDG supports
multiple packaging tools. However, the incorrect link collection needs further research due to the
differences in the package management practices adopted by different package registries [Duan
et al. 2021]. The empirical findings can not be generalized to other package registries, too. However,
the repository traversal algorithm can be applied to any repository, laying a foundation for future
work on other package registries. Despite the specific design of PYRADAR for PyPI packages, the
framework is general and can be adapted to other package registries similar to PyPI (e.g., providing
metadata and source distributions).

7 DISCUSSION
7.1 Comparison with Related Work

The most similar work to ours is [Sun et al. 2023]. There are two noteworthy differences between
our approach and theirs. First, our approach and [Sun et al. 2023] serve different purposes. [Sun
et al. 2023] targets the problem of mapping Debian source packages written in Python to PyPI
packages, and our approach targets the problem of locating a PyPI package’s code repository, which
is more intricate due to the sophisticated Git-based software development [Bird et al. 2009] and a
significantly larger retrieval corpus (244 thousand PyPI packages vs. 173 million repositories).

Second, due to different goals, [Sun et al. 2023] and the Source Code-based Retriever in our
approach adopt different means but overlap in some particular steps in the whole process. Specifi-
cally, [Sun et al. 2023] involves three steps: 1) index: indexing global identifiers (i.e., class names and
function names) defined in PyPI packages; 2) retrieval: retrieving candidate PyPI packages with
three random identifiers from a random Python file in the Debian package; 3) selection: selecting
the most popular candidate using the SourceRank metric. Our Source Code-based Retriever also
has the retrieval and selection steps, but is superior in three aspects related to our problem:

o Our retriever does not require the time-consuming identifier indexing step. The phantom file
analysis reveals that Python files are rarely phantom files in correct package-repository links.
It suggests that querying candidate repositories with the hashes of Python files in the package
is sufficient and does not require the time-consuming identifier indexing step that would take
months for the 12.4 billion blobs in WoC.

o Our retriever utilizes more information to retrieve candidates. First, querying with a Python
file’s hash, as conducted in our retriever, is equivalent to querying with all identifiers in it,
while [Sun et al. 2023] only queries with three identifiers. Second, our retriever uses all Python
files, while [Sun et al. 2023] uses only a random Python file.

e Our approach selects the final candidate more suitably. First, the SourceRank metric used by [Sun
et al. 2023] is unsuitable for ranking repositories due to its inclusion of many package-specific
factors, such as the presence of a link to the source code. Therefore, the approach in [Sun et al.
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2023] does not apply to our problem. Second, [Sun et al. 2023] selects the most popular candidate,
whereas our retriever selects the most similar candidate to the package (measured by the number
of matched Python files), which better suits our retrieval problem.

7.2 The Feasibility of Name-matching Approach

Although the package name and repository name are the same in 11,408 (79.36%) correct links,
the name-matching approach is still insufficient for validating and locating a release’s repository
for three reasons. First, it is common that a package name differs from its repository name, as
evidenced by the 20.64% of correct links, where the name-matching approach fails to retrieve the
correct repository as a candidate. Second, even if the correct repository is retrieved as a candidate,
the presence of many repositories with the same name necessitates further selection of the correct
one. Specifically, the median number of repositories in WoC that have the same name as packages
in the 14,375 correct links is 24. Third, when validating the correctness of the remaining 5,031 links,
the AUC of using only the name_similarity feature is 0.563, while using all six features yields an
AUC of 0.979, suggesting the effectiveness and necessity of the remaining five features.

7.3 Implication

Our research highlights the following future improvements in retrieving and validating the release’s
repository information.

Facilitate account linking between code hosting platforms and package registries. Cross-linking
accounts can largely alleviate the problem of unavailable or incorrect repository information.
On the one hand, package registries and code hosting platforms may collaboratively establish
account binding or account authorization login mechanisms. On the other hand, to the best of our
knowledge, account cross-linking tools between code hosting platforms and package registries are
still lacking. Future work can bridge this gap.

Alert users to potentially incorrect repository information of the release. Package registries can
integrate repository information validation mechanisms and display validation results on the
package’s PyPI page and in the metadata, which can be consumed by package managers and related
package monitoring tools to alert users when searching for, assessing, or installing packages.

Conduct code analysis to identify package names built from a repository. As discussed in Sec-
tion 5.2.2, our validator does not perform well in cases where the package name differs from the
repository name greatly. To alleviate this issue, future work may explore code analysis techniques to
precisely parse the package names built from the repository, which will benefit both the validation
and retrieval of the release’s repository information.

8 CONCLUSION

A package’s source code repository is critical for the use and risk monitoring of the package.
However, the package’s metadata may not contain or contain wrong repository information. In
this paper, we collect 4,227,425 PyPI releases’ metadata, 14,375 correct package-repository links,
and 2,064 incorrect links. Then we systematically compare four existing metadata-based tools and
investigate phantom file differences between correct and incorrect links. Inspired by the empirical
findings, we propose PYRADAR, a novel framework that utilizes the PyPI release’s metadata and
source distribution to automatically retrieve and validate the release’s repository information. We
believe our work can help both practitioners and researchers better use PyPI packages. We provide
a replication package at https://github.com/gaokai320/PyRadar.
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